Electric-field controlled liposome formation with embedded superparamagnetic iron oxide nanoparticles.
نویسندگان
چکیده
Liposomes are one of the most promising biomaterial carriers to deliver DNA,(1) proteins, drugs and medicine in human bodies. However, artificially formed liposomes have to satisfy some crucial functions such as: (i) to efficiently carry drugs to targeted systems, (ii) to be biologically stable until they are removed from human body, (iii) to be biodegradable, and (iv) to be sufficiently small in size for effective drug delivery. Here, we report an efficient and novel method to simultaneously manufacture and incorporate super-paramagnetic iron-oxide nanoparticles (efficient target finder in the presence of external magnetic field) into the liposome's interior and its bilayer. In this technique, we use electric field to control the formation of liposomes and the incorporation of iron oxide nanoparticles. Our preparation procedure does not require any chemical or ultrasound treatments. Apart from that, we also provide further experimental investigations on the role of electric fields on the formation of liposomes using XPS(2) and the magnetic-optical microscope.
منابع مشابه
Magnetic iron oxide nanoparticles, Polyethylene glycol, Surfactant, Superparamagnetic, Chemical co-precipitation
In this study, magnetic iron oxide nanoparticles (Fe3O4) with the size range of 20-30 nm were prepared by the modified controlled chemical co-precipitation method from the solution of ferrous/ferric mixed salt-solution in alkaline medium. In this process polyethylene glycol was used as a surfactant to prevent the solution from agglomeration. The prepared magnetic nanoparticles were characterize...
متن کاملDextran grafted nickel-doped superparamagnetic iron oxide nanoparticles: Electrochemical synthesis and characterization
In this paper, polymer grafted nickel-doped iron oxide nanoparticles are fabricated via an easy, one-step and fast electrochemical procedure. In the deposition experiments, iron(II) chloride hexahydrate, iron(III) nitrate nonahydrate, nickel chloride hexahydrate, and dextran were used as the bath composition. Dextran grafted nickel-doped iron oxides (DEX/Ni-SPIOs) were synthesized with applying...
متن کاملSurface-Modified Superparamagnetic Nanoparticles Fe3O4@PEG for Drug Delivery
In this work, we report on the synthesis of superparamagnetic iron oxide nanoparticles at room temperature using microemulsion template phase consisting of cyclohexane, water, CTAB as cationic surfactant and butanol as a cosurfactant. Surface modification have been carried out by using poly(ethyleneglycol) (PEG). The structure,morphology, and magnetic properties of the products were characteriz...
متن کاملThe Effects of Synthesized Superparamagnetic Iron Oxide Nanoparticles and Electromagnetic Field on Cell Death of MCF-7 Breast Cancer Cell Line
Introduction: Iron oxide nanoparticles, owing to their very small size and superparamagnetic properties, have been considered a potential candidate for several medical applications such as magnetic cell separation, magnetic resonance imaging (MRI), magnetic targeted drug delivery magnetichyperthermia. The present study aimed to synthesize and evaluate the characteristics of super...
متن کاملPreparation and characterization of PEG/Dextran coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical applications
Recent progress in nanotechnology and electrochemical methods can be applied to fine control of the size, crystal structure, and surface properties of iron oxide nanoparticles. Here we appliedcathodic electrochemical deposition (CED) as an efficient and effective tactic for synthesisand double coating of surface of superparamagnetic iron oxide nanoparticles (SPIONs). In first step, bare Fe3O4 n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry and physics of lipids
دوره 165 1 شماره
صفحات -
تاریخ انتشار 2012